Newer posts are loading.
You are at the newest post.
Click here to check if anything new just came in.

July 16 2015


E-waste Republic

The West African country of Ghana, currently undergoing intense economic growth, is an important centre for receiving, re-using, recovering and disposing of electronic waste. Accra, the capital, hosts a thriving second-hand market, a sprawling network of repair shops, and a range of activities which attempt to tap into the full potential of e-waste. And yet, it is also the location of an enormous and heavily polluted electronic waste dumpsite.

Tags: e-waste ghana

July 06 2015


Decentralized energy: Nailing the Microgrid

Designing the Internet of Energy


When Nikola Tesla developed our current electrical system in the beginning of the 20th century, he meant for it to be an intermediate state between an unelectrified and a fully electrified world where energy would be shared freely. Due to market forces and perhaps his overestimation of human capacities, his vision of free, sustainable, energy for everyone was never fully realized.

Ever since we have been stuck with the prototype for an electrical system from the 1920’s, requiring a fully centralized top-to-bottom design and being increasingly maladjusted to today’s electrical generation, transport, storage and consumption requirements. In Tesla’s time AC (alternating current) was the only way of converting electric potential from high to low voltages and vice versa, allowing for long distance transportation of energy. Moreover, as cheap abundant fossil resources where available, storage and efficiency requirements where minimal.

Nowadays, the scarcity of fossil fuels (and severe damage to the environment) make sustainable generation and the storage of their intermittent production an absolute necessity. As such, it seems that all of the significant options for sustainable energy production (wind, PV, CSP, tidal) represent essentially DC (Direct Current) sources. The same is true for storage solutions (though some production and storage solutions produce AC, this is not of a fixed frequency and requires prior DC conversion regardless). Moreover, virtually all modern household and office appliances are essentially DC devices, requiring rectifiers and DC-DC voltage conversion for each and every device.

With the current advancement of fast, reliable, cheap and efficient switching electronics (like IGBT’s and power MOSFET’s) together with widely available DSP’s and microprocessors, the conversion of DC voltages has become at least as efficient as AC-DC or AC-AC voltage conversion, but requires less and cheaper parts. As both generation, storage, production and transport are more efficient using DC, the overall system efficiency can be significantly increased.

At the same time, a fully integrated DC grid would greatly simplify the implementation and design of smart microgrids as no power factors, resonances or induction losses need to be taken into account. With DC technology, units of production, storage and consumption can be seamlessly connected in an ad-hoc fashion in self-sufficient microgrids while increasing resilience and reliability.

In addition, a DC grid would be fully bidirectional and thus ‘smart’ from the very start, requiring only minimal management, creating the potential for small communities to manage their own sustainable electrical supply. As the current centralized AC grid architecture is fundamentally limited in the degree to which (intermittent) microgeneration can participate, moving to a full DC grid provides a fast way forward to fully renewable energy production.

In this context, we see the free spread of technology and knowledge as key factors to allow both for wealthier economies to reduce their footprint at a pace in line with environmental requirements as well as to allow developing economies to increase their standard of living with a minimal impact on the environment. Because of this, the software, hardware and overall system design and other documentation available to the general public for use, modification and re-distribution.

Nikola Tesla aimed for a globally coordinated, integrated, energy grid but failed tragically. Instead, we count on human autonomy and decentralized collaboration to allow groups of people to gradually break away from traditional AC systems by building their own, interconnected microgrids. The idea is to learn by doing, building an Internet of Energy and develop, document and refine the technology one community at a time, while retaining full interoperability with legacy AC systems, demonstrating a path for an accelerated transition to decentralized, sustainable energy.

<!-- more --> image

The Internet of Energy

Similar to the transfer of streams of data on the worldwide internet, electrical energy could be routed and transferred with very high efficiency from sources to their of destinations without central management technology. A similarly created Internet of Energy would natively exhibit self-healing properties by providing for redundancy and islanding. It would not allow for nor require central management and as such would enable communities to autonomously produce and exchange energy while maintaining control and privacy.

How the internet works

In order to study the design of an Internet of Energy we need to first look at some of the core principles behind the design of the internet to find out how such a complex system can show such miraculous stability.

In the 1960s the DARPA, the US defense’ advanced research projects agency, designed the ARPANET, a computer network able to extendibly connect many individually managed computer networks. The ARPANET was designed to maintain functionality while suffering losses of many of its constituent components. It did so well that it grew out span the globe and has now been called the Internet, being a network of interconnected networks.

The internet consists of many interconnected Autonomous Systems. These are individually managed networks with different architectures, topologies and capacities, which are connected through so-called Border Routers. Within Autonomous Systems, individual systems, called Nodes, are connected through ordinary Routers. It is these fundamental design elements of the internet which we will reapply within the context of routing electrical energy.

Routing electrical energy

In traditional systems electrical energy is distributed top-down, from a few large power plants producing energy at immense voltages down to many small houses and electricity sockets. In these situations electrical energy typically flows in a single direction, from high-voltage generation down to medium-voltage distribution down to consumption.

In distributed production scenario’s, where decentralized microgeneration is the main source of energy, this is not so straight forward and energy can essentially flow in any direction. But how to get the right amount of energy in the right place, how to assure that enough energy is available and how to assure that an outage in one side of the net does not take the rest of the net with it?

The Energy Router

Meet the Energy Router, an semi-autonomous agent able to control and measure the flow of electrical energy between and within Nodes, which represent individual units of consumption, storage and production (like households, buildings or administrative units). It essentially forms the border point between the Internal Network working on a lower voltage and the microgrid. The task of the Energy Router is to regulate demand and supply of energy, co-maintaining the grid’s stability as well as that of the Internal Network.

The Energy Router gathers data and controls energy sources like Maximum Power Point Trackers (MPPT) for solar panels, Battery Management Systems (BMS) and communicates directly with appliances or their power supplies as well as the Energy Router’s of other Nodes.

While being internet-connected the Energy Router essentially performs its tasks without, communicating with other Energy Routers by changing voltages. However, when an internet-connection is provided the Energy Routers in a network form an intelligent multi-agent system. Collectively, the routers are able to optimize storage, supply and demand by negotiating current and future (predicted) requirements and availability of energy as well as integrating external information such as weather data from third parties.

The Autonomous System

On the Internet, an Autonomous System is an independently managed network and in The Internet of Energy this is much the same: Interconnected Nodes form Autonomous Systems that are opaque to the outside world and will function regardless of and autonomous from it.

An Autonomous System is made up of interconnected Energy Routers. Most of these connect full Nodes with an Internal Network, others will directly connect storage or generation capacity and yet others might have the task of Border Router, connecting an Autonomous System to other Autonomous Systems or to the legacy grid.

Smart topology

The Nodes in an Autonomous System are linked over Point to Point connections, links between a single Energy Router and another. In this way an Energy Router can be connected to one or more other Energy Routers with a Point to Point link for every connection. As opposed to traditional grid systems, which typically have a hierarchical 'tree’ structure, The Internet of Energy follows a mesh topology where any Node can be connected to any other Node, increasing flexibility, redundancy and efficiency.

Privacy and internal accounting

Because capacity for production, storage and transport within an Autonomous System is managed by the owners, typically a community of users, the usage of the system can be expected to be fairly balanced amongst Nodes. Nevertheless, because structural imbalances add up over time, it is important to keep an accurate ledger on the balances between nodes. Especially in dense environments with continuously changing circumstances and varying degrees of trust between users, the need of authoritative accounting will arise.

This task is traditionally performed by a trusted third party like a network operator, who sometimes even stores your data 'safely’ and 'with respect for privacy’ in 'the cloud’. However, modern blockchain technology (as pioneered by Bitcoin) allow us to perform trusted tasks in a fully decentralized manner. Because power is measured on both ends of the connection between Nodes, they are in a position to validate one another’s findings. After agreement has been reached, values are added to the Autonomous System’s internal ledger (in the form of a blockchain). The numbers are then cryptographically signed so that undetected tampering becomes a mathematical impossibility.

However, because this data is managed within the Autonomous System’s infrastructure, and preferably encrypted using a public key infrastructure (PKI), the privacy of the users is maximally protected; from the outside only aggregate data is shared about the delivery to and from other networks through a Border Router.

The Border Router

The border router connects one Autonomous System to another, or to legacy grids and essentially sells excess energy or buys energy when local generation and storage capacity are insufficient. This makes it an autonomous market agent, algorithmically selling and buying short-term futures based on predictions and knowledge about the state of the Autonomous System combined with market circumstances.

As such, it makes sense to allow the algorithms to occasionally sell of stored energy to perform peak-shaving services for neighbouring systems, for a profit. This could be electric vehicles selling back a fraction of their energy to power known short-term loads or households selling battery-stored energy to nearby industry during the day as plenty of wind energy is predicted during the night.

The energy market might be one of the few markets where price determination down to the millisecond could prove to be constitutive to the environment rather than deteriorative.

Copyleft and Open Source technology

Smart grids and sustainable technology are typically imagined in urban contexts in well-off economies, however the short term (efficiency and monetary) gains in these contexts are limited due to the amount of legacy they have to sustain (and fight) and the small gains in comfort they yield. In contrast, for many emerging markets and less fortunate societies the promise of a cheap, autonomously controlled and stable supply of electric power yields tremendous advantages.

Though often the current lack of infrastructure is the result of political and/or economic factors, sometimes technological factors might avoid these hindrances (think mobile banking in Africa, for example). Providing cheaply available, simple technology to ascertain primary services (like electricity) helps these societies’ infrastructures evolve, creating a positive feedback into the political and/or economic domain. At the same time it helps the technology grow and develop, through economies of scale and (literally) battle testing.

However, developing smart grid technology and then patenting and copyrighting it is not the way to get it adopted in economies that cannot afford to pay for the licensing costs. Developing it and waiting for Chinese clones will not aid in the further development and global economies of scale. Furthermore, it will not allow people and companies alike to produce components locally.

Developing the hardware and the software for The Energy Router, The Border Router and, eventually, the DC/DC and AC/DC converters in the public domain does. Having standardized components that are designed for flexibility and simplicity freely available for usage, modification and (re)distribution creates an enormous potential for growth of smart grid technology and hence for sustainable development and emancipation of societies.

Modularity and maintenance

In current renewable energy systems critical components such as a battery management system (BMS), a maximum power point tracker (MPPT), an inverter and data logging (smart metering) functionality are often integrated into a single device running proprietary firmware. This has the advantage of increased material- and cost-efficiency and integrative optimization (tuning) of the separate parts. There are, however, the risks of accelerated deprecation and difficulties in long-term maintenance.

Typical lifetimes for decentralized renewable energy systems can be expected to be 20-25 years, corresponding to the typical lifetime of photovoltaic panels. However, given the exponential trend in cost reduction as well as global application of the technology, major technological breakthroughs as well as significant cuts in their application costs can be expected for most parts of the system. This means that, similar to the exponential trend in IT, repairing devices as part of maintenance will be more expensive both in terms of monetary costs as well as in resource use due to increased efficiency.

Rather than designing one system that needs to be replaced regularly during the lifetime of the renewable energy system, risking compatibility and increased difficulty in maintenance, it would be desirable to aim for a modular approach where a single Energy Router is able to use a myriad of protocols and busses to communicate with a host of different current, future and legacy devices connected to the grid. As the core role of the Energy Router is communication with other devices, its (cheap) hardware needs to be upgraded only occasionally while its software can be continuously updated and maintained.

Instead of having a single device which cannot be extended, updated nor modified and requires proprietary knowledge to be maintained, working with generic devices allows for seamless upgrading, repairing and replacement of parts. This offers users a tremendous flexibility in the design of their energy system, being free from a vendor lock-in, potentially allowing them to do their own maintenance while still using the latest technology. Paradoxically, it would also significantly reduce the amount of hardware that gets wasted.

Similar to the way the Linux operating system allows people to still use old computers, having legacy support for older devices will allow people who would not otherwise have access to advanced renewable energy systems to use deprecated technology makes access more equitable while reducing the overall manufacturing costs.

Another comparison might be in the hifi domain. Think of how many discrete vintage amplifiers, tuners and record players are still being put to use, now compare this to the rapid decline of modern cheap integrated hifi towers from our environment. While cheaper, more compact and advanced, the integrated hifi towers with their double deck tape players, digital tuners and 12-bit CD players quickly faded away because their individual parts could not be repaired, replaced or (in case of the cassette player) simply removed altogether.

Resilience and stability

The protocols and technologies enabling the global internet were designed such that one failed system, network or link could never disrupt the functioning of the entire network. With systems of this kind of complexity, disruptions, faults and degradations are a given. Hence, resilience against perturbations is a must.

It is common knowledge that electricity networks in the developing world are often lacking in stability. However, it is less commonly known that even in developed parts of the world centralized hubs of energy interconnects allow for the propagation of faults across networks. This is what caused the 2003 Northeast Blackout in the United States and the blackout in all of Italy in the same year.

Taking in mind that the aforementioned blackouts occurred due to human and system failures of the system, we could only imagine the security implications when electricity systems are systemically and strategically attacked. Such is the case in areas struck by (civil) war, such as Irak, where insurgents are continually attacking and disrupting services such electricity and water supply.

The fundamental cause behind these vulnerabilities to natural and intentional perturbations lie in the scaling behaviour of centralized systems. Regardless of the amount of redundancy in the system design, the very fact of the design’s centrality yields hubs that provide single points of failure and vectors for fault propagation.

As with the internet, a decentralized electrical system’s stability would benefit from increases in scale. Rather than being maximally interconnected, the border routers in this system allow for containment of faults or ‘islanding’. This way the potential for global fault propagation is ultimately limited at the expense of a minimally decreased resilience of the autonomous system.

Experience learns that the islanding approach to systems resilience prevents global failure of the system. At the same time, it facilitates accelerated diagnosis and recovery of the faulted system as an autonomous system is limited in complexity.

Lastly, because the individual nodes within the autonomous system often provide for their own storage within the internal (in-house) electricity systems, only longer disruptions of the local system will affect the electricity supply.

An ongoing effort

Worldwide, several commercial and non-commercial parties are working towards the implementation of some or all of the described technology. Several small-scale pilot implementations for DC grids have been established and power conversion parties like Vicor Power and TDK-Lambda are actively pushing power conversion technology.

In The Netherlands, the European and perhaps world’s leader in direct current smart grids, Direct Current B.V. is working on decentralized smart grid technology that follows many of the mentioned principles. They are currently working to scale up their implementations and to establish open standards for the wiring, implementation and communication in DC smart grids.

On the academic end there is the (now completed) DCC+G research project and there are groups at Fraunhofer in Germany and the Intelligent Systems group at the Center for Mathematics and Informatics (CWI) in The Netherlands working in DC smartgrid technology. Then there is The Green Village cleantech playground and pilot site at the TU Delft, in The Netherlands.

Meanwhile, in the United States, the Emerge Alliance has set up an ‘open association’ with standards and certification for compatible DC wiring and appliances, accessible for those who pay for membership. 

On the Open Source front, the researchers from Open Source Ecology are looking to implement a Universal Power Supply, that looks like it could be a good candidate for the hardware of the Energy Router, once and if it’s developed. However, they are actively looking for an experienced electrical engineer to do the groundworks.

Then there is the  Open Source battery management system by the Canadian Dacian Todea, engineered for batteries and controller to outlast your solar panels. While designed to fit unconnected off grid systems, the fact that it is Open Source might pave the way for modular extensions. Having the controller there, it being high quality and Open Source proves, for one, that it is possible.

Lastly, there is yours truly, studying the feasibility of a domestic DC microgrid for Schoonschip, a self-sustainable floating community in Amsterdam, through the systems consulting and cleantech development firm Metabolic.

Being part of a circular redevelopment of the neighbourhood of Buiksloterham in the North of Amsterdam, the objective is to make Schoonschip the most sustainable floating community in the world. This goes with respect to material use, construction practises, water systems, heating as well as electricity.

The current article is the result of the last months of research, as is the publicly available knowledge base (on Hackpad) that backs it. The project is still in an early stage and I hope to be making contributions along the way. Consider the knowledge base an openly available notepad, internal documentation that is external to begin with - true to an Open Source development approach.

Now, to get you involved: please feel free to comment on this post, start a discussion, ask questions, read the Hackpad and: contribute to a future of free (libre), communally controlled, locally produced energy!

July 04 2015


Driving towards MMK2015

This summer I will be spending one month at MMK, a ‘bootcamp’ for sustainable living in the beautiful area of Lika in Croatia. What is remarkable about this area is that it has, essentially, been left untouched by humans for about 20 years. 

The devastating effects of the Yugoslavian war has caused a reduction of the population from 15.000 before to a mere 1.000 today, leaving nature to reclaim the land. And it has.

With less than a promille of the surface area used by intensive agriculture, the hills covered by forests and the meadows juicy grass cut for the sake of feeding cattle elsewhere. 

Before, all hills used to be grazed by cattle. Now, 40 centimeters of very nutritious (clayish) topsoil covers the land. It has never seen chemical pesticides or industrial pollution. Could this be a haven for ecological agriculture?

This video is the drive from the nearby village of Lovinac to the MMK location. During the month I am here I will be doing a follow-up with Kruno Jost, founder of MMK, and one with the major of Lovinac.


What’s the Real Problem With Urban Agriculture: Misinformation



In this guest post, Blue Planet Consulting summer intern Ben Mickel responds to this recent article critcizing urban agriculture: What’s the REAL Problem with Urban Agriculture by Harkyo Hutri Baskoro


Before trying to answer what the problems with urban agriculture might be, lets first define what exactly urban ag is: Urban agriculture is the practice of cultivating, processing, and distributing food in or around a village, town, or city. (Bailkey, M., and J. Nasr. 2000. From Brownfields to Greenfields: Producing Food in North American Cities. Community Food SECURITY News. Fall 1999/Winter 2000:6)

This is a complex industry that exists at the intersection of Horticulture, Technology, Urban Planning and Food Security.  There is so much positive support coming from the community and an influx of capital is driving the expansion of high tech urban agriculture around the world and sometimes its difficult to know if its all just “hype” or really part of the future of cities. 

Growing Food in the Middle of the City is only Half the Story

Let’s address some of the cons Baskoro raised about Urban Ag. The first issue Baskoro addresses is whether or not it is “worth it to farm in the middle of the city” despite the fact that still most urban agriculture occurs not in the heart of most cities but in the peri-urban areas. In fact, some of the greatest opportunities for urban agriculture lie on the edge of the city where the land is cheaper but access to infrastructure and customers is still high. Lets stop thinking about urban agriculture simply as picturesque farms in the city and start determining how we can feed more of the city from nearby sustainable farms.

Keep reading

May 13 2015


Elon Musk introduces Tesla’s battery system

The largest producer of batteries has started selling them and makes an excellent case for energy storage easing the transition to sustainable (micro)grids by buffering energy intermittent renewables such as wind and solar.

Of course, there is no current without a countercurrent. Hence a critical review of the economics in Forbes and another from Bloomberg.

April 22 2015


April 20 2015


Stagones: drops of water

Interview with Yiannis and Nikos, two of the founders of Stagones (“drops of water”) on the island of Evia (Euboea), a conglomeration of sustainable living and building initiatives.

You can find out more about Stagones on their website and an extensive blog post about has been written by the people from Eco Logis.

For an overview of communities visited in Evia, have a look at the Summary of Greece video.

April 13 2015

Play fullscreen

Don’t Panic: The Truth About Population

Swedish statistician Hans Rosling puts on a brilliant show as he explains the planet’s population and wealth trends, and pinpoints related sustainability challanges.

April 11 2015

In many pagan societies, the earth was seen as a mother, a fertile giver of life. Nature — the soil, forest, sea — was endowed with divinity, and mortals were subordinate to it. The Judeo-Christian tradition introduced a radically different concept. The earth was the creation of a monotheistic God, who, after shaping it, ordered its inhabitants, in the words of Genesis: “Be fruitful and multiply, and replenish the earth and subdue it: and have dominion over the fish of the sea and over the fowl of the air and over every living thing that moveth upon the earth.” The idea of dominion could be interpreted as an invitation to use nature as a convenience.
— Thomas Sancton, Time Magazine, January 2, 1989

April 10 2015


Open Source and Arduino

In this video Lorenzo Romagnoli from Fablab Torino and Casa Jasmina explains what the Arduino is, and details the main difference between Open Source and closed source hardware and software.

March 29 2015

5332 7231 500

Impressions from Torri Superiori

A brief photographic impression from my stay at one of the oldest (25 years!) ecovillages of Italy in what could be one of the most beautiful corners of the planet. 

The community is settled in a medieval village constructed as one building in the form of a tower with labyrinthine paths and staircases connecting the various appartments of inhabitants, the guesthouse, kitchen and dinner rooms. The building has been beautifully restored and suited with modern facilities such as (solar) heating, (grid connected) photovoltaic electricity and internet.

While most if not all of the excellent meals are ecological, only part of the vegetables and fruits are produced in the communities three gardens and two olive plantations. 

During my short stay I’ve witnessed the production of potatoes, organges, lemons, rucola, avogado, onions, carrots, peas and several others.

Today I will be recording an interview with one of the community’s founders and current president of the Italian academy for Permaculture, Massimo Candela, so expect more on this in a while.

Meanwhile, for more information on Ecovillagio Torri Superiori, visit their well maintained website:


How will everything change under climate change?

But what should we do with this fear that comes from living on a planet that is dying, made less alive every day? First, accept that it won’t go away. That it is a fully rational response to the unbearable reality that we are living in a dying world, a world that a great many of us are helping to kill, by doing things like making tea and driving to the grocery store and yes, okay, having kids.

The second in a major series of articles on the climate crisis and how humanity can solve it. In this extract taken from the Introduction to This Changes Everything by Naomi Klein, the author calls the climate crisis a civilisational wake-up call to alter our economy, our lifestyles, now – before they get changed for us. 

March 24 2015


Meanwhile in Torri Superiore

Short video right after my arrival at Ecovillagio Torri Superiore near Ventimiglia, Italy. It feels like arriving in heaven.

March 14 2015


Driving in traffic is harrowing for both brain and body. The blood of people who drive in cities is a stew of stress hormones. The worse the traffic, the more your system is flooded with adrenaline and cortisol, the fight-or-flight juices that, in the short-term, get your heart pumping faster, dilate your air passages and help sharpen your alertness, but in the long-term can make you ill. Researchers for Hewlett-Packard convinced volunteers in England to wear electrode caps during their commutes and found that whether they were driving or taking the train, peak-hour travellers suffered worse stress than fighter pilots or riot police facing mobs of angry protesters.

But one group of commuters report enjoying themselves. These are people who travel under their own steam, like Robert Judge. They walk. They run. They ride bicycles.

Why would travelling more slowly and using more effort offer more satisfaction than driving? Part of the answer exists in basic human physiology. We were born to move. Immobility is to the human body what rust is to the classic car. Stop moving long enough, and your muscles will atrophy. Bones will weaken. Blood will clot. You will find it harder to concentrate and solve problems. Immobility is not merely a state closer to death: it hastens it.

Charles Montgomery, author of ‘Happy City: Transforming Our Lives Through Urban Design’, in an excerpt printed in The Guardian, 'The secrets of the world’s happiest cities’.



March 13 2015


Interview with Kruno Jost who is founding a sustainable community in Lika, Croatia — about communities, sustainable living, comfort and stress. The previously introduced MMK will be one of the consistuting events of this community.


March 08 2015


The Cyberpunk Apartment

Science-fiction writer and technology journalist Bruce Sterling, together with Massimo Banzi, co-founder of Arduino, is starting a two-year pilot project of an Open Source hackable house Casa Jasmina in Turin, Italy.

The pilot will be researching the way a ‘house of the future’ might actually be lived in, as the house will function both as a test-bed as well as a guesthouse. The aim is to combine digital fabrication tools and open source electronics for the realization of an open source, connected apartment.

I will pay a visit to the house and the fablab next week, results of which will be documented here.

March 05 2015


Those cheap Chinese solar panels have a dirty little secret

March 01 2015


Summary of Greece

A brief summary of the sustainable living projects I’ve visited in Greece:

For more documentation about these and other communities, have a look at the Interesting events and communities page in the project’s knowledge base.

February 25 2015

Play fullscreen

La Belle Verte (The Green Beautiful)

A very peculiar French comedy, about a distant human civilization visiting the savage and primitve Earthlings after hundreds of years, only to find that we haven’t progressed much (yet).

Sadly enough, the full movie is only available for streaming in some countries. Luckily, there is a torrent available (direct download/magnet here).

February 21 2015


How Bitcoin’s Blockchain Could Power an Alternate Internet

A very interesting article on how one of the central concepts introduced by Bitcoin, the blockchain, could enable trust in decentralized computer and social networks.

Innovative but ambitious projects like Ethereum and Ripple might allow for the creation of self-enforcing contracts which allow for the formation Decentralized Autonomous Organizations (DOA’s) - uncorruptible autonomously acting agents. 

Such smart contracts might prove a very effective, efficient and fair way for more and less developed countries to have a juridical system, pensions, solidarity funds, insurances or even voting systems.

A Dutch translation of this article is available in De Correspondent.

Older posts are this way If this message doesn't go away, click anywhere on the page to continue loading posts.
Could not load more posts
Maybe Soup is currently being updated? I'll try again automatically in a few seconds...
Just a second, loading more posts...
You've reached the end.

Don't be the product, buy the product!